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Proposed problems and solutions should be sent in duplicate to the MONTHLY
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indicates that no solution is currently available.

PROBLEMS

11858. Proposed by Arkady Alt, San Jose, CA. Let D be a nonempty set and g be a
function from D to D. Let n be an integer greater than 1. Consider the set X of all x
in D such that g"(x) = x, but g¥(x) # x for 1 < k < n. Prove that if X has exactly
n elements, then there is no function f from D to D such that f" = g. (Here, for
h: D — D, h* denotes the k-fold composition of 4 with itself.)

11859. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury lonin, Central Michigan University, Mount Pleasant, MI. Find all pairs (m, n) of
positive integers for which there exists an m x n matrix A and an n X m matrix B, both
with real entries, such that all diagonal entries of AB are positive and all off-diagonal
entries are negative.

11860. Proposed by Dimitris Vartziotis, NIKI MEPE Digital Engineering, Katsikas
loannina, Greece. Let ABC be a triangle. Let D, E, and F be the feet of the alti-
tudes from A, B, and C, respectively. Extend the ray DA beyond A to a point A,
and similarly extend £B to B’ and FC to C’, in such a way that V3IAA'| = |BC|,
V3|BB'| = |CA|, and v/3|CC’| = |AB|. Prove that A’B’C’ is an equilateral triangle.

11861. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietham. Let n
be a natural number and let f be a continuous function from [0, 1] to R such that

f;,l f(x)>*!'dx = 0. Prove that

(2n+ 1)2n+1 1 2n 1 .
W(/o f(x)dx) s/o(f(x)) dx.
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